Consulting
& Publishing
Table of Contents:
Preface i  
Complete Mathematical Induction 1  
1.1  The Principle of Complete Induction 1  
1.2  Bernoulli's Inequality 3  
1.3  Binomial Coefficients 4  
1.4  Combinatorial Significance of Binomial Coefficients 6  
1.5  The Sum Sign 7  
1.6  Binomial Theorem 8  
Inequalities and Absolute Value 11  
2.1  The Absolute Value 12  
2.2  The Concept of Monotony 16  
2.3  The Completeness of \(\mathbb{R}\) 18  
2.4  The Monotone Convergence Criterion for Sequences 18  
Limit Values 21  
3.1  Definition of a Limit 21  
3.2  Differentiation 27  
3.3  Basic Rules of Differentiation 29  
Important Functions 33  
4.1  The Exponential Function in the Real 33  
4.2  The Natural Logarithm 36  
4.3  The General Power Function in the Real 40  
4.4  Polynomials 42  
4.4.1  Identity Theorem for Polynomials 45  
Existence Theorems 47  
5.1  The Nested Interval Theorem 47  
5.2  The Bolzano-Weierstraß Theorem 47  
5.3  The Extreme Value Theorem 49  
5.4  The Intermediate Value Theorem 50  
5.5  The Inverse Function 51  
5.6  Local Extrema 54  
5.7  Rolle's Theorem 55  
5.8  The Mean Value Theorem 55  
Applications of the Mean Value Theorem 57  
6.1  Monotony, Local Extrema, Convexity 57  
6.1.1  The Monotony Criterion of Differential Calculus 57  
6.1.2  Criterion for Strict Local Extrema 58  
6.1.3  Convexity Criterion 59  
6.2  Hölder's Inequality 60  
6.3  Newton's Method 62  
6.4  The Extended Mean Value Theorem 64  
6.5  The Rule of de l'Hospital 65  
6.6  Taylor's Formula 66  
6.6.1  The Exponential Series 68  
6.6.2  The Logarithm Series 69  
6.6.3  The Binomial Series 71  
Oscillation Equation and Trigonometric Functions 73  
7.1  Intermediate Section on Power Series 76  
7.1.1  Leibniz' Convergence Criterion 77  
7.1.2  Theorem on the Radius of Convergence 78  
7.1.3  A Criterion for Determining the Radius of Convergence 79  
7.1.4  The Derivative of a Power Series 80  
7.2  Inverse Functions 84  
7.2.1  Geometric Significance of the Angular Functions Sine and Cosine 86  
The Euclidean Plane and its Affine Mappings 89  
8.1  Rotations Around the Origin 91  
8.2  Basic Geometric Sine and Cosine Laws 92  
8.3  The Scalar Product 93  
8.4  Hessian Normal Form of a Straight Line 96  
Complex Numbers 101  
9.1  The Cauchy Criterion Applies in \(\mathbb{C}\) 106  
9.1.1  Moivre's Theorem 107  
9.2  The Fundamental Theorem of Algebra in \(\mathbb{C}\) 108  
9.3  Partial Fraction Decomposition 111  

©  ATICE LLC  2022